Exercise 12

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

$$
u(x)=\sin x-\int_{0}^{x}(x-t) u(t) d t
$$

Solution

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=\cos x-\frac{d}{d x} \int_{0}^{x}(x-t) u(t) d t
$$

Use the Leibnitz rule to differentiate the integral.

$$
\begin{gathered}
u^{\prime}(x)=\cos x-\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t) u(t) d t+(0) u(x) \cdot 1-(x) u(0) \cdot 0\right] \\
u^{\prime}=\cos x-\int_{0}^{x} u(t) d t
\end{gathered}
$$

Differentiate both sides with respect to x again.

$$
\begin{gathered}
u^{\prime \prime}=-\sin x-\frac{d}{d x} \int_{0}^{x} u(t) d t \\
u^{\prime \prime}=-\sin x-u(x) \\
u^{\prime \prime}+u=-\sin x
\end{gathered}
$$

The initial conditions to this ODE are found by plugging in $x=0$ into the original integral equation,

$$
u(0)=\sin 0-\int_{0}^{0}(x-t) u(t) d t=0
$$

and the formula for u^{\prime},

$$
u^{\prime}(0)=\cos 0-\int_{0}^{0} u(t) d t=1
$$

Therefore, the equivalent IVP is

$$
u^{\prime \prime}+u=-\sin x, u(0)=0, u^{\prime}(0)=1
$$

